Intrusion Detection Model based on Differential Evolution
نویسندگان
چکیده
Information systems need to be constantly monitored and audited; analysis of security event logs in heavy traffic networks is a challenging task. In this paper we considered Differential Evolution for the intrusion detection problem. We used NSL_KDD dataset for our experiments which is derived from the standard KDD CUP 99 Intrusion Dataset. We also provided the comparative results of the differential evolution with the state of the art classification algorithm like SVM. We reduced the dimension/features of the NSK_KDD datasets using rough set algorithm and ran DE and SVM this increased the speed of the evolutionary algorithm without compromising the detection rate. General Terms Intrusion Detection Systems, Optimization algorithms
منابع مشابه
Intrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملIntrusion Detection System using Hybrid Differential Evolution and Group Method of Data Handling Approach
This paper proposes a new intrusion detection methodology based on hybrid of differential evolution (DE) and group method of data handling (GMDH). It focuses on intrusion detection based on system call sequences using text processing techniques. The hybrid DE-GMDH is used to classify a process as either normal or abnormal. This work presents the application of PCA and hybrid DE-GMDH to modeling...
متن کاملReal-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011